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Abstract. An information theoretic measure is introduced to compare the disorder in 
non-periodic sequences. I t  is shown that the measure correctly distinguishes quasiperiodic 
and aperiodic sequences which have been deduced from earlier studies using diffraction 
patterns. although i t  is often necessary to use a set of measures. depending on the order 
of  the source used. The particular sequences studied are the Thue-Morse sequence and 
the generalizations of the golden mean sequence common!y studied in connection with 
quaeicrystals. 

1. Introduction 

The discovery by Shechtman er a/ (1984) of an  alloy with apparent quasicrystalline 
structure, and  the work o f  Merlin er a/ (1985) on Fibonacci superlattices, have inspired 
a great deal of theoretical research concerning systems with order intermediate between 
periodic and random. Ouite generally there is interest in  non-periodic structures with 
long-range positional order, although mathematical constraints have restricted the 
majority of studies to one-dimensional systems. The most popular lattice studied has 
been that defined by the  Fibonacci sequence, because it is  the analogue of the 
three-dimensional Penrose tiling (Penrose 1974) generally thought to describe the 
positions of atoms in quasicrystals. Also of interest are the generalized Fibonacci (GF) 

sequences (Gumbs and Ali 1988a, b, 1989, Ali and  Gumbs 1988, Holzer 1988a, b, 
Kolar and  Ali 1990), the Thue-Morse (TM) sequence (Thue 1906, 1912, Morse 1921) 
especially its recent generalization (Kolar er a /  1991) and  any sequence generated in 
the same manner using some type of deterministic substitmion rule. 

An important consideration is the question as to which non-periodic sequences are 
the more 'disordered. One  possible way to answer this question is in terms of diffraction 
patterns: if the non-periodic sequence is ordered to the extent that the diffraction 
pattern shows Bragg peaks, similar to those seen for periodic systems, then the structure 
is called quasiperiodic (QP); otherwise the structure is usually called aperiodic (AP) .  

The Fibonacci sequence and certain of its generalizations are in the set of quasiperiodic 
structures (Bombieri and  Taylor 1986, 19871, whereas the TM sequence is aperiodic 
(Cheng et a/ 1988, Kolar et a/  1991) and, by this criterion, can be  thought of as a link 
between QP and random sequences. On the other hand, electronic spectrum calculations 
(Riklund et a/ 1987, Cheng et ai 1988, Qin et ai 1990) o f a  one-dimensional tight-bending 
TM chain indicate an electronic structure more like a periodic chain compared with 
the structure of a Fibonacci chain ( N i u  and Nori 1986, Ma and Tsai 1988) so from 
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this perspective, the TM sequence is intermediate between the peridic and Fibonacci 
sequences. This apparent contradiction shows the need for further investigation of 
these lattices and for the development of ways of measuring the similarities and 
differences between the sequences. 

In order to compare the different non-periodic chains of atoms with each other 
and with the periodic and random chains (the latter of which model amorphous 
material), we can introduce a measure from information theory. For simplicity we can 
consider the atoms to be either A or B so that a chain of period 2 is ABABABAB. : 
however, the ideas presented could be extended to any number of types of atoms and 
could be applied to any  one-dimensional sequence of atoms in a three-dimensional 
structure. For a given positive integer k we can calculate the conditional probabilities 

where each xi  = A  or B. From these proababilities an entropy HI can be defined (see 

minimum value of 0 for the period 2 chain. For chains such as those defined by the 
Fibonacci and TM sequences, Hk will generally have a value between 0 and 1 so that 
the entropy can be used as a measure of disorder in the sequence, allowing us to 
compare quantitatively the disorder in different lattices. We should point out that these 
ideas from information theory have been applied to binary sequences appearing in 

connected to the phenomenon of quasicrystals. Furthermore, since the measure only 
depends on the sequences xI . . . xk it can be applied in other situations where, for 
example, A and B may represent two different bond lengths or two different layers of 
atoms (as for example in superlattices). 

In section 2 of this paper we shall give a general overview of the mathematics of 
en!ropies acd !heir use zs a meascre of disorder in binary seqcences. !n section 3 we 
present calculations for the specific sequences (GF, TM, random, periodic) of interest 
here and in section 4 we discuss our numerical results. 
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2. The measure of disorder 

We consider here a semi-intinite sequence composed of the ietters A and B, which 
can be taken to represent the two types of atoms in a one-dimensional lattice. If we 
regard this sequence as  a kth-order Markov source, then we can calculate the condi- 
tional probabiliites 

P(x,+,  I x I  . . . x I )  (xi = A or B )  
i.e. the prohahi!i!y !ha! a particular string of letters x: . . . x i  appearing somewhere in 
the sequence is immediately followed by the letter sk+,.  For example, with a first-order 
source, the four conditional probabiliites are P ( A I A ) ,  P ( B l A ) ,  P(AI E )  and P(BI  E ) .  
For the completely random sequence these probabiliites are all $, whereas for the 
sequence of period 2 they are 

P ( A ) A )  = P( B I  E )  = o and P ( A  I A )  = P( B 1 A )  = 1. 

From the above probabiiities, the conditional entropy is deiined by 
H ( x  Ix, . . . x k )  

= - P ( A l x ,  . . .  x k ) l o g 2 P ( A l x ,  . .  . X L )  

- P( nix, . . . x k )  iog, P ( B  1.1, . . . .xi) 



Measurement of disorder in non-periodic sequences 3981 

which leads to the following definition of the kth-order entropy (or measure of 
uncertainty): 

Hk =x P ( x , .  . . x k ) H ( x i x , .  . . x k )  , (2) 

where the sum is over all possible strings of length k occurring in the sequence. The 
use of entropy to measure information and uncertainty was first introduced by Shannon 
and Weaver (1949) and it has been developed extensively. We will employ ( 2 )  to 
measure the uncertainty or disorder in the sequences considered. (For a recent dis- 
cussion, see Burrows 1989.) 

Clearly the practicality of ( 2 ) ,  for some particular value of k, depends upon how 
easy it is to calculate all the required probabilities associated with the sequence being 
studied. For a purely random sequence, all the conditional probabilities are f ,  so that 
each conditional entropy becomes 1 and hence from (2) we get Hk = 1 for all values 
of k, signifying of course complete uncertainty about the occupation of each lattice 
position. On the other hand, each conditional probability for a sequence of period 2 
is all either 0 or 1, making the conditional entropy 0, so that H I  = 0 for all k, indicating 
complete order and no uncertainty. Between these two extremes, we can expect to find 
those sequences which are neither periodic nor random. In  this paper we will consider 
(2) with k = 1 or 2 as a measure of disorder in such sequences as the generalized 
Fibonacci and TM sequences and we will focus on this application in the next sections. 

3. Calculation of the entropies 

In this section we examine the first-order and second-order entropies (2)  for various 
sequences for which we will need to calculate the probabilities P ( x ) ,  P ( x y ) ,  P(xly)  
and P(x1yz)  where x, y and z are either A or B. 

3.1. The Fibonacci sequence 

The Fibonacci (or golden-mean) sequence can be generated by the substitution rule 

A+AB B + A  

which gives rise to the chain 
ABAABABAABAABABAABABA 

As the length of the sequence goes to infinity the ratio of the As to Bs approaches the 
golden mean 

U = (1 +Jj) /2  

and it is easy to show that P ( A )  = U-' and P ( B )  =U-* with U satisfying 
U2 - 0 - 1 = 0. (3 )  

To calculate the other probabilities involves more work and we will illustrate the 
general approach by deriving P ( A B ) .  By referring back to the substitution rule it can 
be seen that the number of occurrences of A B  after the substitution is equal to the 
number of occurrences of A in the string before the transformation: 

@ ( A B )  = N ( A )  
Also the number of As and Bs after the substitution is 

hi = 2 N ( A ) +  N ( B ) .  
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/ Thus i 

N ( A B ) /  6'= N ( A ) / ( 2 ' N ( A ) +  N ( B ) )  = ( N ( A ) / N ) / ( I +  N ( A ) I N ' )  

P (AB)=  P ( A ) / ( I +  P ( A ) )  = l / ( l + u ) =  K' 

/ 
where N = N ( A )  + N (  B ) .  In the limit of the infinite sequence, we obtain 

(using ( 3 ) )  

Similarly, it is found that P ( A A )  = f 3  and P( BA) = u-2 and we have the obvious 

first-order source, such as 
P!,.,.) ~ n, Eexce 1: Is easy ca!cu!ate :be cox&coxa! probab(!i!ies fGr a 

P ( B  1 A )  = P ( A B ) / P ( A )  =U-' 

and likewise 

P ( A ~ A ) =  U-', P ( A ~ B ) =  1 and  P ( B I  B )  = O  

Some of the conditional probabilities for a second order source are readily apparent, 
namely 

P ( A ~ A A )  = P (  B I A B )  = O  and P ( B I  A A )  = P ( A ~ A B )  = I .  

The remaining probabilities can b e  calculated using relationships such as 

P(AIBA)=P(BAA) /P (BAj  

which, following the evaluation of P(BAA)  (in the same manner as  for P ( A B ) ) ,  leads 
to P ( A I B A ) = u - '  and in the same way P(BIBA)=u- ' .  

The probabilities given above are sufficient t o  evaluate the entropies H ,  and HZ 
via ( I )  and (2). Obviously, explicit analytic expressions for the entropies can be  obtained 

v, UUL ab ,,,cy arc q"1Lc C",,l~"C"LCU d l l U  l l " L  pa,,,cu,'l,,y t,,u,uumuu& Lucy 

are omitted here. The actual numerical values will be given in section 4. 

:.. ...-.. .P ~ L... .. .L... ... -..:A- ----,:--&-A ^ _ _ I  _ ^ &  _-... :-..,--,..:,,..-:--.:-- .L̂ .. 
111 ,t.n,,s U, 

3.2. The generalized Fibonacci sequences 

The Fibonacci sequence of section 3.1 can be generalized (Gumbs and Ali 1988a, b, 
*non,  :.. ...-.. .P .L. ... L..: .... :-- -..I- 
L Y D Y )  111 1 t . I ~ I I l h  U1 LllC bUUSLIIULIVII  LUlC 

A + A"'B" B + A  

where A"' is a string of m successive As and B" n successive Bs, m and n being 
positive integers. The mean governing a particular CF sequence is 

U = t [ m  + ( m'+4n)"']  

which is the positive root of 

2- mu- n = 0. (4) 

The case m = n = 1 is just the standard golden-mean lattice considered in section 3.1.  
Other special cases of particular interest are m = 2, n = 1 (silver mean), m = 3, n = 1 
(bronze meanj, m = i ,  n = i (copper mean), m = i ,  n = 3 (nickei meanj. Ai chis poiiit, 
it should be  mentioned that Bombieri and Taylor (1986, 1987) have studied the Fourier 
spectra of these lattices, and  their conclusions show that a G F  sequence has a spectrum 
with discrete &function peaks (i.e. quasiperiodic), only if m > n or m = n ;  if m < n 
then the sequence is aperiodic. (The  main idea in the work of Bomberi and  Taylor is 
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that a one-dimensional ‘tiling’ is quasiperiodic if the characteristic equation (4) of the 
substitution rule has just one root of absolute value greater than one, and the rest of 
absolute value less than one.) From a different perspective, Kolar and  Ali (1990) 
separated the GF sequences into what they called class I ( n =  1 )  and class I I  ( n >  I )  
according to whether the corresponding dynamical trace map is volume-preserving 
and invertible. Unfortunately the connection (if any) between the Kolar-Ali 
classification and the division according to quasiperiodicity is unclear. 

In turning to the calculation of the entropies for the G F  sequences we first note 
that it is a fundamental property of the infinite sequences that the ratio of the As to 
the B s  is u / n ,  from which is obtained 

P ( A )  = u/(u+ n )  and P ( B )  = n / ( u +  n )  

For general values of m and n, it is lengthy, but straightforward, to calculate the 
remaining probabilities needed, in the same manner as was done for the golden-mean 
lattice, so we just present the final values. The  probabilities for the various strings of 
length 2 are 

P(AA)  = (u- l ) / ( u + n )  P ( A B ) = P ( B A ) = l / ( u + n )  

P ( B B ) = ( n  - l ) / ( u + n )  

The conditional probabilities for a first-order source are 

P ( A  I A )  = - i ) i u  P ( B  I A )  = 

&‘(A/ E ) =  n-’ P ( B  I E )  = 1 - n - ’ .  

The conditional probabilities for a second-order source are 

0 n = l  
P ( B I A B ) = [ ~  n > l  

m = l  
m > l  P(AI BA) = { 
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(Note the symbol '-' denotes that the conditional probability is undefined,) With 
these probabilities the first-order and second-order entropies can be readily calculated, 
using ( 1 )  and (2), for arbitrary values of m and n. 
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3.3. The Thue-Morse sequence 
cxe lJ~ay ef gexe:afixg the sequence is  the scbsepdeox :u!e ~ AB and 
E +  BA which leads to the infinite sequence 

ABBABAABBAABABBA 

and it is easy to see that, at any stage, the number of As and B s  are equal so that 
P ( A )  = P ( B )  =;. To calculate a probability such as P ( A B ) ,  it must first be noticed 
from the substitution rule that the number of occurrences of A B  after the substitution 
is equal to the number of occurrences of A plus the number of occurrences of BB 
before substitution, i.e. 

N A B )  = N ( A ) +  N ( B B ) .  

Coupled with this, we have the fact that the substitution doubles the number of-letters, 
i.e. 

N = 2 N  

so that we obtain 

P ( A B )  = Iim N ( A B ) / N  =~P(A)+~P(BB) =;+;P(BB)  
N-m 

using P ( A ) = f .  Now we have 

N ( B B ) =  N ( A B )  

so that 

P ( B B ) =  lim N ( A B ) / N = ~ P ( A B ) .  
N - m  

Together equations (6) and ( 5 )  imply 

P ( A B ) = f  and P ( B B )  =; 

and by symmetry 

P ( B A ) = ~  and P( AA) = f 

The conditional probabilities for a first-,order source are now found immediately to be 

P ( A I  A )  = P ( B I  B )  = f and P ( A I  B )  = P ( B / A )  =$. 

After some further calculations, similar to those carried out for the Fibonacci sequence, 
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the conditional probabilities needed for a second-order source turn out to be 
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P ( A ~ A A )  = ~(51~5) = 0 
P ( A ~ A B )  = P ( B  I A B )  = P ( A  I BA) = P ( B  1 BA) =+. 

P ( B ~ A A )  = P ( A ~ B B )  = I ,  

All the probabilities needed to calculate H ,  and H ,  are now at hand. 

A Dnom.lrr -11 li.n...r:nn 
7. IIC.7"n.a "1" Y.IC"I~."I. 

We have used the probabilities given in section 3 to calculate the first-order and 
second-order entropies for the Fibonacci sequence, a number of its generalizations, 
and the Thue-Morse sequence. The results are presented in table 1, along with those 
for the periodic and random chains, for comparative purposes. The sequences con- 

(i.e. to have lower entropy) than those which are not QP, particularly the TM and nickel 
mean sequences. Thus the TM sequence, according to the measures used here, does 
constitute a link between the QP and random sequences as implied by the Fourier 
spectra. (One other point regarding the TM sequence is that H, and H2 are identical 
with those for the G F  sequence with m = 2, n = 3, perhaps indicating simularities 
between the physical properties of the two systems.) More specifically, the golden, 
silver and bronze mean sequences (all Q?) possess the entropies which are lowest to 
first order and get even lower to second order. The other Q P  sequence ( m  = n = 2) in 
the table has high H ,  6ut  much lower H2 because it actually consists entirely of strings 
of AAs and BBs, so that a first-order measure is inadequate to show how well ordered 
this sequence is. To first order, the silver and bronze mean sequences have about the 
same entropy, but to second order, that for the silver mean is much lower. The reason 
for this becomes apparent by writing out the sequences explicitly, from which one can 
see that the string AAB predominates in both sequences, so that H 2  depends most 
strongly on P(A1AA) and P(B1AA) which are nearer to the random values o f f  and 
f for the bronze mean giving it the large H,. 

The copper mean sequence ( m  = I ,  n = 2)  is completely random to first order due 
to the fact that the ratio of As to Bs is 1 and the conditional probabilities are all f ,  
making it indistinguishable from the random sequence. However, the eigenvalues for 
the characteristic equation (4) of the sequence are 2 and - 1 so that the Bombieri-Taylor 
criterion is almost satisfied. Thus the sequence can be regarded as almost QP and it is 
actually quite ordered, as can be seen from the low value of 0.5 for H?. 

sidered to be Q ?  (i.e. !hose With m 3 n )  CI" be c!e.r!y seen !O be gencr.!!y more ordered 

Table I .  First-order and second-order enrropies for various one-dimensional sequences. 

periodic 
m = 1, n = I (golden) 
m = 3 ,  ti = I (bronze) 
m = 2 .  n = I (silver1 
Thue-Morse 
m = I ,  n = 3  (nickel) 
m = 2 , n = 2  
m = I ,  n = 2 (copper) 
random 

0.0 0.0 
0.597 0.366 
0.679 0.520 
0.692 0.361 
0.910 0.667 
0.940 0.709 

I .o 0.5 
1.0 I .n 

0.970 0.360 
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The division of G F  sequences, by Kolar and Ali (1990), into class I ( n  = 1) and 
class I 1  ( n >  1) does not seem to be strongly represented in the entropies calculated 
here although the value of H ,  is generallly lower for n = 1 than for n > 1. This may 
be connected with the fact that a first-order source is used rather than a reflection of 
the degrees of disorder in the two classes. 

One general comment we will make is that no single entropy of a particular order 
k is sufficient to compare the relative disorder in all these different sequences. One 
needs to consider two (or more) of them in concert, or perhaps utilize instead some 
more complicated comparison such as a rank correlation for a set of H k .  For example, 
H ,  is quite informative about many of the sequences, but cannot distinguish the copper 
mean from the random one; a higher-order measure is needed. Consequently it is more 
meaningful to qualify a comparison with the order of the Markov source used so that 
the copper mean is identical with the random sequence to first order but much more 
ordered than the random sequence to second order. Also H, tends towards 0 for large 
m or n, because such sequences consists of long strings of As and/or Bs,  so that their 
structure cannot be represented faithfully using a first-order source. One might expect 
that the most useful measures for a particular G F  sequence would be those whose order 
is about the same as max{m, n } .  

To summarize, we have presented a measure of disorder in non-periodic sequences 
using the idea of entropy for a first-order or second-order Markov source. We have 
applied this measure specifically to the Fibonacci, G F  and TM sequences and found 
that the TM and non-QP G F  sequences are more disordered than the QP ones, so that 
they can be thought of as a 'link' between the QP and random sequences. With the 
increasing importance of non-periodic sequences in condensed matter theory, it is 
hoped that the relationships among these sequences can be further clarified, using the 
tools of information theory. 
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